$$ \newcommand{\partd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\partdd}[2]{\frac{\partial^{2} #1}{\partial {#2}^{2}}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\Int}{\int\limits} \newcommand{\D}{\displaystyle} \newcommand{\dA}{\; \mbox{dA}} \newcommand{\dz}{\; \mbox{dz}} $$

 

 

 

Bibliography

  1. V. L. Streeter, W. F. Keitzer and D. F. Bohr. Pulsatile Pressure and Flow Through Distensible Vessels, Circ Res, 13, pp. 3-20, 1963.
  2. M. Anliker, R. L. Rockwell and E. Ogden. Nonlinear Analysis of Flow Pulses and Shock Waves in Arteries Part I: Derivation and Properties of Mathematical Model, Zeitschrift f\"ur Angewandte Mathematik und Physik (ZAMP), 22(2), pp. 217-246, 1971.
  3. T. J. R. Hughes and J. Lubliner. On the One-Dimensional Theory of Blood Flow in the Larger Vessels, Mathematical Biosciences, 18, pp. 161-170, 1973.
  4. Y. Fung. Biodynamics. \uppercaseCirculation, Springer, 1984.
  5. F. N. v. d. Vosse and M. v. Dongen. Cardiovascular Fluid Mechanics, Eindhoven university, 1998.
  6. N. Westerhof, P. Sipkema, C. V. d. Bos and G. Elzinga. Forward and Backward Waves in the Arterial System, Cardiovasc Res, 6, pp. 648-656a, 1972.
  7. N. Stergiopulos, D. Young and T. Rogge. Computer Simulation of Arterial Flow With Applications to Arterial and Aortic Stenoses, J. Biomech., 25(12), pp. 1477-1488, 1992.
  8. Y. Huo and G. S. Kassab. A Hybrid One-Dimensional/Womersley Model of Pulsatile Blood Flow in the Entire Coronary Arterial Tree, Am J Physiol Heart Circ Physiol, 292(6), pp. H2623-2633, 2007, http://ajpheart.physiology.org/cgi/content/abstract/292/6/H2623.
  9. J. Wang and K. Parker. Wave Propagation in a Model of the Arterial Circulation, journal of Biomechanics, 37(4), pp. 457-470, 2004.
  10. J. Wan, B. Steele, S. Spicer, S. Strohband, G. Feij\'oo, T. Hughes and C. Taylor. A One-Dimensional Finite Element Method for Simulation-Based Medical Planning for Cardiovascular Disease, Comput. Meth. Biomech. Biomed. Eng., 5(3), pp. 195-206, 2002.
  11. S. Sherwin, V. Franke, J. Peir\'o and K. Parker. One-Dimensional Modelling of Vascular Network in Space-Time Variables, journal of Engineering Mathematics, 47, pp. 217-250, 2003.
  12. L. Formaggia, D. Lamponi and A. Quarteroni. One-Dimensional Models for Blood Flow in Arteries, journal of Engineering Mathematics, 47, pp. 251-276, 2003.
  13. L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani. Multiscale Modelling of the Circulatory System: a Preliminary Analysis, Comput. Vis. Sci., pp. 75-83, 1999.
  14. M. Olufsen. Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries, Am J Physiol, 45(1), pp. H257-H268, 1999.
  15. D. Bessems, M. Rutten and F. v. d. Vosse. A Wave Propagation Model of Blood Flow in Large Vessels Using an Approximate Velocity Profile Function, J Fluid Mech, 580, pp. 145-168, 2007.
  16. D. Bessems. On the Propagation of Pressure and Flow Waves Through the Patient Specific Arterial System, Ph.D. Thesis, TU Eindhoven, http://www.mate.tue.nl/mate/showemp.php/2081, 2007.
  17. K. Azer and C. S. Peskin. A One-Dimensional Model of Blood Flow in Arteries With Friction and Convection Based on the Womersley Velocity Profile, Cardiovascular Engineering, 7(2), pp. 51-73, 2007.
  18. R. Spilker, J. Feinstein, D. Parker, V. Reddy and C. Taylor. Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries, Ann. Biomed. Eng., 35(4), pp. 546-559, 2007.
  19. B. N. Steele, M. S. Olufsen and C. A. Taylor. Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions, Computer Methods in Biomechanics and Biomedical Engineering, 10(1), pp. 39-51, 2007.
  20. I. Vignon and C. Taylor. Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Waves in Arteries, Wave motion, 39, pp. 361-374, 2004.
  21. T. Mabotuwana, L. Cheng and A. Pullan. A Model of Blood Flow in the Mesenteric Arterial System, BioMedical Engineering OnLine, 6(1), pp. 17, 2007, http://www.biomedical-engineering-online.com/content/6/1/17.
  22. S. Balar, T. Rogge and Y. DF. Computer Simulation of Blood Flow in the Human Arm, J. Biomech., 22(6-7), pp. 691-7, 1989.
  23. J. Alastruey, K. Parker, J. Peiro, S. Byrd and S. Sherwin. Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows, journal of Biomechanics, 40(8), pp. 1794-1805, 2007.
  24. H. Suga, K. Sagawa and A. Shoukas. Load Independence of Instantaneous Pressure-Volume Ratio of Canine Left Ventricle and Effects of Epinephrine and Heart-Rate on Ratio, Circulation Research, 32(3), pp. 314-322, 1973.
  25. H. Suga and K. Sagawa. Instantaneous Pressure-Volume Relationships and Their Ratio in Excised, Supported Canine Left-Ventricle, Circulation Research, 35(1), pp. 117-134, 1974.
  26. L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani. Numerical Modeling of 1D Arterial Networks Coupled With a Lumped Parameters Description of the Heart., Comput. Meth. Biomech. Biomed. Eng., 9(5), pp. 273-288, 2006.