If we assume a functional relationship between \( \mathbf{u}_p = [p, Q] \) and \( \mathbf{u}_A = [A, u] \) their partial differentials are related by the Jacobian of \( \mathbf{u}_p = [p, Q] \) with respect to \( \mathbf{u}_A = [A, u] \): $$ \begin{equation} \tag{202} \frac{\partial \mathbf{u}_p}{\partial t} = \mathbf{J} \, \frac{\partial \mathbf{u}_A}{\partial t} \quad \text{ and } \quad \frac{\partial \mathbf{u}_p}{\partial x} = \mathbf{J} \, \frac{\partial \mathbf{u}_A}{\partial x} \qquad \text{ where } \quad \mathbf{J} = \left [ \begin{array}{cc} \displaystyle \frac{\partial p}{\partial A} & \displaystyle \frac{\partial p}{\partial u} \\ \displaystyle \frac{\partial Q}{\partial A} & \displaystyle \frac{\partial Q}{\partial u} \end{array} \right ] \end{equation} $$ Substitution of (202) into (200) yields after subsequent multiplication of the Jacobian inverse: $$ \begin{equation} \tag{203} \frac{\partial \mathbf{u}_A}{\partial t} +\mathbf{J}^{-1} \mathbf{M}_p \mathbf{J} \;\frac{\partial \mathbf{u}_A}{\partial x} = \frac{\partial \mathbf{u}_A}{\partial t} + \mathbf{M}_A \;\frac{\partial \mathbf{u}_A}{\partial x} = 0 \end{equation} $$ By comparing (203) with (201) we may relate \( \mathbf{M}_p \) and \( \mathbf{M}_A \): $$ \begin{equation} \tag{204} \mathbf{M}_A= \mathbf{J}^{-1} \mathbf{M}_p \mathbf{J} \end{equation} $$
From the relation in (204) it is easy to show that their eigenvalues of \( \mathbf{M}_p \) and \( \mathbf{M}_A \) are the same and the left \( \mathbf{L} \) and right \( \mathbf{R} \) eigenmatrices from the two systems are related with: $$ \begin{equation} \mathbf{R}_p = \mathbf{J} \, \mathbf{R}_A \quad \text{ and } \quad \mathbf{L}_p = \mathbf{L}_A \, \mathbf{J}^{-1} \tag{205} \end{equation} $$
The Riemann-invariants are approximated by: $$ \begin{equation} \Delta \omega= \mathbf{L}_p \, \Delta \mathbf{u}_p \tag{208} \end{equation} $$ and for small changes one may approximate: $$ \begin{equation} \Delta \mathbf{u}_p = \mathbf{J} \Delta \mathbf{u}_p \tag{209} \end{equation} $$ Substitution of (209) and (205) into (208): $$ \begin{equation} \Delta \omega= \mathbf{L}_p \, \Delta \mathbf{u}_p = \mathbf{L}_A \, \Delta \mathbf{u}_A \label{} \end{equation} $$